network cabling,cat6 cable

Basics and Benefits of Zone Cabling – Part 2

14 Dec 2017

network cabling,cat6 cableAs mentioned in Part 1, zone cabling designs provide benefits in materials savings, decreased installation times, and easier MACs (moves, adds, and changes). Part 2 will continue discussing the basics and benefits of zone cabling.



Designs


Experts recommend CAT 5e and 6 UTP (unshielded twisted pair) zone cabling topology with a connecting block system within the ZE (zone enclosure). This configuration will render unnecessary the stocking of factory pre-terminated and tested interconnect cords for connections in the ZE, simplifying cable management through the elimination of cable slack.


Please note that CAT 6A UTP media is not recommended for zone cabling due to reasons involving performance and flexibility. UTP cabling is vulnerable to crosstalk in particular installation scenarios. In addition, it is not the best media for supporting remote power applications with loads of 30W or more. Because CAT 6A UTP zone deployment is dependent on modular connections inside the ZE, connections provided by pre-terminated and tested interconnect cords need to be available for rapidly enabling MACs. Affordable shielded zone cabling solutions are recommended to address these situations.



Cost Savings


Even though more CAPEX (capital expenditure) will be necessary for a zone cabling installation, assessing total costs should also account for OPEX (operating expenditure). The performance of MACs is classified as OPEX, and studies by Siemon found there are hundreds of dollars in savings from each move, addition, or change when using a zone cabling design versus a traditional cabling design. Their study also discovered a tipping point when ROI begins accruing from utilizing a zone cabling design.


IT (information technology) needs for many organizations evolve constantly, which requires being able to quickly reconfigure floor space. An improved capability of supporting MACs will allow owners of facilities to achieve considerable ROI benefits from deploying zone cabling systems in a two to five year period. According to Siemon, the combined costs of CAPEX and OPEX for zone cabling designs will be invariably less than traditional cabling designs


Part 3 will continue discussing the basics and benefits of zone cabling.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of our clients in the Washington, D.C. and New York City areas. Efficiently working together, Progressive teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call our toll free number (800) 614-4560 today.

Structured Cabling, cables, Washington DC

The 5 Most Common Structured Cabling Errors – Part 1

19 Oct 2017

Structured Cabling, cablesStructured cabling systems are so standardized that good practices should merely entail following ISO/IEC, CENELEC or Telecommunications Industry Association (TIA) documentation for panel and outlet standards, cable pathway standards, maximum cable and patch cord lengths, patch testing standards, etc. Strictly doing so will invariably result in an installation that is professional and trouble free. In addition, as data speeds grow faster and faster, following industry standards becomes even more crucial.


Improperly installed cabling made up of shorter runs, which do not overly stress the system, may function well enough. In addition, data speeds may be quite beneath the cable specification capacity. As an example, CAT5e carrying 100Mbps and capable of 1Gbps will have ample margin of error. However, structured cabling systems still need qualified technicians for proper installation supporting maximum data speeds over the entire network as required.


The following will discuss the five most common errors of structured cabling. Remember to call an experienced and expert cabling installation team to get the best results for your company’s project.



Error No. 1


Considering cables as merely wiring is the first error. They are actually very important electronic components that provide the pathway for data from point to point within a network. These points may be a desktop PC, a network switch, server, router, and wireless access point. When you consider that cables make these connections possible, then you can understand how important it is to make sure that the cabling is of high quality and properly installed.



Error No. 2


Running data cables near power cables is the second error. Even when cables are screened, this practice is unsound. When data cables are running near and parallel to   power cables, noise emitted by power cables may infiltrate data cables. As the load carried by power cables fluctuate, resulting spikes or surges may radiate into the data cables, creating undesired noise decreasing the quality of the data transmission.


Part 2 will discuss three more common errors of structured cabling.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of our clients in the Washington, D.C. and New York City areas. Efficiently working together, Progressive teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call our toll free number (800) 614-4560 today.

IT Support,Data Cabling,Atlanta GA

Why Structured Cabling is Important for Business Phones

27 Sep 2017

IT Support, Data Cabling,Atlanta GAIf your organization is considering a new VOIP (Voice Over Internet Protocol) system, you should think about the structured cabling system needed to support it and maximize its potential. The following summarizes the advantages your digital phone system will have with a well-designed structured cabling system.



Decreased Noise


CAT 6 and CAT 6A cable provides more noise reduction than older cables. Fiber optic cabling is even better. Less noise resistance results in more static and faulty connections during phone conversations. Higher levels of noise also decrease network speed because the system is forced to retransmit data until it is no longer corrupted. Although purchasing lower quality cable saves money in the short run, it may result in long term business losses because of slower response times and annoyed customers.



Lengthened Runs


Higher quality cable will be capable of supporting longer runs that are free of artifacts and errors. Fiber optic cables are not restricted by the length of runs. It is the superior option for a data center or business telephone system because of its excellent noise resistance and high speed. Although second choices, CAT 5e to CAT 6A cabling are capable of supporting runs to 100 meters without noise. Cables that can support long runs provide greater flexibility for layouts, decreasing the need for data hubs or repeaters and increasing reliability.



Maintenance Savings


CAT 5e, CAT 6, and fiber optic cables are highly dependable. However, if they ever become faulty or the network needs to be reconfigured, a structured cabling system that is well organized and diligently marked will save time spent on maintenance. While a company’s network is down, business may be impacted, resulting in lost revenue. Tracing faults is made much easier by a sound structured cabling system.



Transmission Speed


Business is often time-sensitive, and you will want to use the highest quality cable your company can afford. CAT 6A cable is capable of supporting a maximum of 10 Gigabits per second while CAT 5e can only achieve 100 mbps. Older, less capable cables are not recommended because their slow data transmission and high noise levels cannot meet current VOIP demands.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of their clients in the Washington, D.C. and New York City areas. Efficiently working together, their teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call their toll free number (800) 614-4560 today.

Structured cabling,Network Cabling, Washinton DC

Data Center Cabling Best Practices – Part 3

5 Jun 2017

cable management,Network Cabling,New York CityAs mentioned previously, modern data centers must be flexible, scalable, reliable, and manageable, making best practices required. Part 3 will cover Color Identification and Naming Scheme.



Color Identification


A method of fast visual identification, color coding makes management simpler, conserving time spent on the tracing of cables. Patch panel ports can also be coded, and various colored jacks and inserts are also coded. As determined by a particular manufacturer’s own color scheme, cables are available in numerous colors, each of which can be made applicable to the specific function of a cable or connection type.


Color schemes are expandable through the use of color bands at the end of every cable, using various colored sleeves and colored ports on the patch panel. However, it will also be necessary to use a secondary non-color scheme to make it possible for those who are color blind to identify the cables.



Naming Schemes


After determining the physical layout for the cabling that will be used, use a naming scheme that can be logically applied for facilitating fast and effortless identification of every cable component. Labeling can be an especially effective way to improve team communication among staff members because it makes confusion and uncertainty unlikely when a colleague must search for a particular component. Clear labeling is integral to the success of the naming scheme, and it should not be neglected.


A good naming scheme documents and labels every cable component. The following is the typical hierarchy for a naming scheme: Building, Room, Rack, Patch Panel, Workstation Outlet, Port, and Cable. Each should receive a designation indicating its location preceded by the area(s) above it. For example, Rack A03 would receive the designation SJ01-5D11-A03, if Room is designated SJ01-5D11, and Building is designated SJ01.


Upon the approval of the naming scheme, your team can begin labeling components. The team should prioritize drafting a manual that details the naming scheme and include it as part of the training program for newly hired data center administrators.


The Best Practices for Cable Component Selection will be discussed in the next series.



Union Network Cabling


When your work requires a unionized cabling group, call on Progressive Office Inc. for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

IT Support,Data Cabling,Atlanta GA

The Organizations that Set Cabling Standards

27 May 2017

Data Cabling,Network Cabling,Atlanta GAThe TIA (Telecommunications Industry Association) and the ISO (International Organization for Standardization) are the primary organizations that oversee the development of structured cabling standards for the industry. Committees formed by the IEEE (Institute of Electrical and Electronics Engineers) provide assistance through testing and setting performance specifications for various standards.


Compliance with standards ensures the functioning of systems at specified levels, backward compatibility, and a greater selection of equipment will exist. General global recognition of standards permit utilizing equipment sourced from various countries inside computer systems. Requirements for the components of optical and copper cabling including cables, assemblies, connectors, cabling spacing and pathways, administration, field testing, and installation are standardized to make worldwide acceptance possible.


Technicians in North America typically use TIA standards, while the rest of the world uses ISO standards. Examples of organizations that set regional and national standards organizations are CENELEC (European Committee for Electrotechnical Standardization), CSA (Canadian Standards Association) and JSA (Japanese Standards Association). Their standards are generally compatible with TIA and ISO.


Different terminology used by TIA and ISO Associations sometimes cause confusion because they refer to the same item. For example, what the TIA terms as Cat5e is what ISO terms to be Class D. However, adherence to standards set by TIA and ISO ensure system cabling requirements are properly implemented in the categories below.




  • Insertion Loss – Decrease of signal strength down the transmission line.

  • Return Loss – Measurement of signal reflections on the cable.

  • NEXT – Near End Crosstalk Loss due to signal coupling.

  • Propagation Delay / Delay Skew – Elapsed time for signal to reach other end of cable or the delay between signal arrival at far end on slowest and fastest cable pairs.

  • ACR – Difference between insertion loss and NEXT.

  • ELFEXT – Identical to NEXT, but for cabling system’s far end.

  • PSANEXT / PSAACRF – Power sum alien crosstalk at near end / Power sum alien crosstalk at far end.


Due to ever-increasing data rates, the efforts of the standards organizations are assuming greater importance in terms of ensuring proper system design.



Union Network Cabling


When your work requires a unionized cabling group, call on  Progressive Office Inc. for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Cat5e Cat6/6a Cabling,Office Cabling

Data Center Cabling Best Practices – Part 2

13 May 2017

Cat5e Cat6/6a Cabling,Office CablingAs mentioned in Part 1, modern data centers must be flexible, scalable, reliable, and manageable, making best practices required. Part 2 will cover cabling for Modular Data, High Density/High Port Count Fiber Equipment, and Standards.



Modular Data


Increasing in popularity, modular cabling systems for fiber and copper connectivity introduces the plug-and-play concept, which simplifies cable installation and significantly decreases costs and labor. Typically, cables are factory-terminated and tested.


While modular cabling is less costly when the infrastructure is modified in-house, it will not be as flexible because of the possible required commitment to a vendor for ongoing compatibility.



High Density/High Port Count Fiber Equipment


When networking equipment gradually grows in density and port counts rise to several hundred, the proper management of the connected cabling will also require increased effort.


In the past, the direct connection of cables to individual ports of equipment with low port-counts was thought to be manageable. Unfortunately, the same task will be very time consuming for high-density/high-port-count equipment. Eventually, the addition or removal of cables directly connected to these ports will be almost impossible.


The utilization of Multifiber Push-On (MPO) cable assemblies featuring a single connector at one end of cable and multiple duplex breakout cables at the other end will ease cable management.


The concept revolves around pre-connecting high-density/high- port-count Lucent Connector (LC) equipment with LC-MPO fan-out cable to dedicated MPO modules inside a dedicated patch panel. Once completely cabled, this patch panel will work as "remote" ports. Ideally the patch panels should be located on top of the cabling equipment to facilitate access to overhead cabling. This method significantly decreases cluttering of equipment and cables, resulting in improved cable management.



Standards


The ISO (International Organization for Standardization) and TIA (Telecommunications Industry Association) are the main organizations that develop structured cabling standards for the industry. IEEE (Institute of Electrical and Electronics Engineers) committees do the testing and then set performance specifications.


Standards compliance makes sure that systems function at specified levels, allows backward compatibility, and a greater variety of equipment will be available internationally. Widespread global acceptance of standards allows the sourcing and use of equipment manufactured by different countries.


Color Identification and Naming Scheme will be discussed in Part 3.



Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Structured Cabling, cables, Washington DC

Data Center Cabling Best Practices – Part 1

4 May 2017

Structured Cabling, Washington DC, New York CityModern data centers are equipped with devices and networking equipment that connect them. These devices demand increasingly greater bandwidth, and so their fiber or copper cabling must perform at a high level. Today’s data centers must be flexible, scalable, reliable, and manageable, making best practices required.



Planning the Infrastructure


Thus, documenting the existing and planned network, along with its equipment is needed. A flexible patching structure will permit the interconnection of devices at desired locations.



Structured Cabling


The structured approach of cabling revolves around the design of runs and connections that ease cable identification, maintenance, repair, and future expansion or reconfiguration. A Main Distribution Area (MDA) and Horizontal Distribution Area(s) (HDAs), along with two-post racks that permit improved access and cable management, will be needed.


MDA and HDA components must be of high quality and capable of bearing expected future loads. Their layout should have horizontal and vertical cable managers. The MDA contains primary cross-connects and core networking equipment. The HDA contains the cross-connects for the distribution of cables to Equipment Distribution Areas (EDAs). Patch cables will connect servers and storage by utilizing patch panels at their respective EDA.


Next, the equipment racks inside the data center must have their layout determined. A horizontal cabling configuration will be used for the distribution of cables from the HDA to the EDA. Flexible connectivity is required by a dynamic data center environment. The goal is the implementation of a system that transmits fiber channel, Ethernet, and other protocols.


Future port and application requirements will also need to be considered. Expansion and technological advances must be anticipated, so the installation of ports and cabling needed in the future should be done now to save on labor costs and downtime if upgrades are needed.



Structured Infrastructure Benefits



  • Cable identification and fault isolation simplified

  • Consistent cabling lays sound foundation for future

  • Future expansions and modifications made easier

  • Standard-compliant components from multiple vendors possible

  • Flexible connections provided


Cabling for Modular Data and High Density/High Port Count Fiber Equipment will be discussed in Part 2.



Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

cable,Data Cabling ,Cat5e, Cat6/6a Cabling

Category 5e Cabling Becoming Obsolete

4 Apr 2017

cable,Data Cabling ,Cat5e, Cat6/6a CablingIt is inevitable that applications requiring speeds greater than 100 Mbps and 1000 Mbps will increase. The growing use of wireless devices, high resolution images, HD video streaming, surveillance, and multimedia are straining the capacity of Category 5e infrastructure, and there will come a point when it will be unable to cope.


Although it is capable of handling 1000 Mbps speeds at 100 MHz, the upgrading of Category 5e cabling will be necessary in the near future in order to support new applications and emerging technologies that will be deployed by businesses that are bandwidth intensive.



Category 5e Inadequate in Near Future


Cabling will be migrating from being behind walls to above ceilings, where it can end at a wireless access point (WAP). Much more cabling will be needed to serve an increasing utilization of WAPs for numerous users.


The advent and growth of new Wave 2 WiFi devices, which transmit at data at ranges of 1 Gbps up to perhaps 7 Gbps, will require faster Ethernet links for the connection of these WAPs. Installing Category 6A cabling may be the only effective solution for companies. The need for average speeds greater than 1G is increasing, perhaps to 10G. Category 5e is incapable of carrying speeds of 10 Gbps speeds over a required distance of 100 meters.


An emerging technology using balanced twisted-pair cabling, HDBaseT is used to transmit uncompressed HD video, audio, Ethernet, control, and power over 100 meters. Category 5e will be unable to support it, while Category 6A cabling is capable.


4-cable pair PoE, the next power over Ethernet standard, provides power more efficiently. However, the gauge of cable must grow in order for the reduction of resistance and permit higher power delivery. Consequently, 4-pair PoE has superior performance on Category 6A 23 AWG than Category 5e 24 AWG.



Cabling Standards Recommend Category 6A


For certain organizations, such as educational institutions, commercial buildings, data centers, and healthcare facilities, new installations require or recommend at least Category 6 cabling. Even though Category 6A may require greater capital expenditure than Category 5e cabling, costs will be decreased in the long term. A company’s network will be future proofed and will be capable of supporting new applications and emerging technologies.



Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Network Cabling,data cabling,,DC

Comparing Cat 7 to the Other Cats

3 Mar 2017

Data cabling, network cablingNowadays offices and homes utilize either a wireless (Wi-Fi) connection or wired network connection. Usually faster than Wi-Fi, wired connections also have lower latency. These two types of network connection continue to progress technologically, providing users ever increasing speeds.


In the case of home networks, the speed of the internet connection is typically the issue, and the cabling may not be a factor. However, a company must consider the specifications of particular cables and how these would meet its requirements in order to properly decide which to select. There can be a vast difference between the network speeds of the various Ethernet cables.



Types


Cables are differentiated by standard categories. Category has been abbreviated to “Cat” by the industry. Currently, the most common cables in use are Cat 5, Cat 5e, Cat 6, and Cat 6a. The newest type is Cat 7. Every type is backward compatible, allowing users to insert a newer cable into a device that was manufactured for an older cable without any compatibility issues arising.

Progress


With every new cable category, users were provided increased speed and decreased crosstalk. Newer category cables provided faster speeds at increased lengths of cable. The following offers comparisons at 100 meters of cable, illustrating the differences between the ethernet cable categories:

Cat 5 - Considered slow and inadequate for business networks, providing up to 100 Mb/second at 100 Mhz.

Cat 5e - provides up to 1 Gb/second internet speed at 100 Mhz.

Cat 6 -provides up to 1 Gb/second, and cable lengths up to 55 meters can give internet speeds of 10 Gb/second at 250

Cat 6a -can provides speeds up to 10 Gb/second, to 100 meters of cable length, at 500 Mhz.

Cat 7 - provides speeds up to 10 Gb/second to 100 meters of cable, at 600 Mhz.

History


Cat 5 was the standard in 1995, Cat 5e became standard in 2001, and Cat 6 was introduced in 2002. Arriving in 2008, Cat 6a is typically the newest cable the majority of companies have used because it is not considered necessary to update to Cat 7 yet. Cat 7a and Cat 8, which were respectively released in 2010 and 2013, are still waiting in the wings.

Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. We specialize in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290
Cat5e Cat6/6a Cabling,cable installations

What is Certification and is it really necessary?

10 Aug 2015

Environmental Problems with Cat5e, Cat6, and Cat6A Cable


Cable must be installed so that external environmental factors do not have an effect on the performance of the network. Problems can occur at the patch panel punch down, at the wall plate jack and anywhere along the cable itself. Maybe an inadvertent kink is in the cable. Or there is a snag in the cable as it got pulled across a rough surface in the rafters above the drop ceiling. Or maybe the cable got too close to an electric line. Any one of these issues can degrade the performance of an individual cable.


There are two basic kinds of testing that is performed during the installation of cabling:




  1. Continuity Testing

  2. Certification


Continuity Testing



Continuity Testing is a test to insure that the wires in the connectors at the faceplate and at the patch panel are connected up correctly. There are 4 pairs of wires and each wire is color-coded. So, as the technician is connecting everything, a particular sequence is required. If a wire is connected in the wrong order, the cable will fail. This is a basic wire-mapping test. If this test fails, the connector and wires are re-examined and re-terminated. All of our cable installations include continuity testing.


But the only way to insure and guarantee full speed to every cable is to do Certification Testing on each cable.



Certification



Certification Testing is a performance test that utilizes a precision device that sends a signal from one end of the cable to the other. This test is the only way to test the data-carrying capacity of each cable. For example, Cat6A cable is rated to run at 10G/sec. But if you have an issue, the cable will work but it might be running at a slower speed. It passes the continuity test but it's not performing at 100%. Certification will find the fault, pin-pointed to its exact location so that our technician can fix it, retest it and fully certify it as 100% top-speed rated.


The Fluke DSX-5000 is a very expensive test device that we employ to test and certify our cabling jobs. It costs about an extra $10 per cable to get everything tested and certified. But without this test, we can't guarantee top speeds throughout your network. And, considering that most cabling projects have a useful lifespan of 15 - 20 years, this investment upfront is very cost-effective. It means you will have full speed to every device for the entire lifetime of your cabling infrastructure.


Certification includes a PDF report showing every cable and the test results.


Do you have an upcoming cabling project?