Office Cat6 Computer Network Cabling Pittsburgh PA

The Importance of Structured Cabling to Your Company

13 Oct 2018

Office Cat6 Computer Network Cabling Pittsburgh PAStructured cabling provides consistently high performance because of its proper design and installation, which also allows for expansion and flexibility. When designed and installed by expert technicians, a structured cabling system is composed of several components that communicate with each other. As a result, it performs with efficiency and reliability. In addition, cabling can be transferred, adjusted, and expanded with ease. The system is also future proofed, so the system can evolve with technology as the company grows.



Conventional vs. Structured Cabling


Running point to point, conventional cabling directly connects hardware by utilizing jumpers or patch cables. Differing in approach, structured cabling deploys a series of trunks or patch panels that connect to hardware. These patch panels then link to another patch panel within the Main Distribution Area (MDA), the nerve center of a structured cabling system. MACs (moves, additions, and changes) at the MDA can be accomplished with ease by using short patch cords.



Why Use Structured Cabling?


Providing a more secure, rapid, and efficient method for connecting an office, structured cabling utilizes compact and standardized patch panels connecting to the MDA. This permits easier revisions and additions. The superior organization of structured cabling lets teams address issues faster, resulting in less labor cost and downtime.


Structured cabling’s goal is a well-organized cabling system that results in rapid connections and a leaner server room. As a result, cabling requires less room and is tidier, permitting improved airflow. The regulation of temperature is optimized, which helps preserve sensitive server room equipment.



Advantages of Structured Cabling



  • Cable and port tracing performed faster

  • Decreased downtime due to improved cable organization

  • MACs eased because of improved MDA configuration

  • Reduction of cabling mass, increasing airflow and cooling

  • Speedier connections and easier troubleshooting

  • Tidier and better organized cabling


A transition to structured cabling will improve the aesthetics and organization of your company’s cable system. It will also help your team function with more speed, efficiency, and effectiveness.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of our clients in the Washington, D.C. and New York City areas. Efficiently working together, Progressive teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call our toll free number (800) 614-4560 today.

Structured Cabling,,Office Cabling.connectors

How Improper Cabling Causes Network Issues – Part 2

12 Sep 2018

Structured Cabling Office Cabling Atlanta GAAs discussed in Part 1, the performance issues of your company’s network may be directly related to improper cabling. Part 2 will discuss Compatibility, Patch Cords, and Poor Installation.



Compatibility


Issues occasionally arise when coupling cabling and connectivity from various manufacturers. The use of jacks from one manufacturer with cabling from another, and then patch panels from a third firm is an example. This combination may result in compatibility problems. When components that are not intended by design to function together are used, network performance issues will likely result.


Purchasing top of the line high-performance cables, while utilizing lower-quality connectivity components, will produce a weak link in the chain. Cable of the highest quality will be unable to attain its full performance potential when it is married to jacks, patch panels, and plugs that are not rated to support its capabilities.



Patch Cords


Patch cords may be the top reason why there are issues in network performance.


Your company may have installed a high performance cabling infrastructure of the highest quality, but if low-quality patch cords were purchased to economize, network speed, signal quality, and overall performance will be compromised.



Poor Installation


Vetting the cabling services team you hire is perhaps the most important factor in the prevention of network performance issues. Check that the company you are considering has technicians that are properly trained and certified to install the cabling system you have chosen.


When cable installers are not properly trained, it will greatly increase the probability that your company’s structured cabling system will not be properly installed. Incompetent installation can result in problems such as improper pulling, excessive bending, and cable being installed too near sources of signal interference like large motors and machinery.


Poorly trained technicians will leave cabling that is not properly terminated or correctly polished. Sloppy work and insufficient attention to detail during installation will usually result in poor network performance, along with costly and time-consuming efforts to address the problems the substandard work caused.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of our clients in the Washington, D.C. and New York City areas. Efficiently working together, Progressive teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call our toll free number (800) 614-4560 today.

Structured Cabling,Washington DC New York City

Structured Cabling’s Top Ten Tips

31 Dec 2017

Structured Cabling,Washington DC New York CityStructured cabling that is properly installed can help your business grow by helping to improve its network performance and IT capability. The following will discuss structured cabling’s Top Ten Tips for installing cabling systems.



#1 Cable Labeling


Although cable labeling will slow installation, it will help save lots of time and effort during future repair, reconfiguration, and maintenance tasks.



#2 Cable Testing


Ensure every cable is tested and confirmed to be functioning properly during the installation process. A cable with a nominal performance should not be utilized as it may decrease overall system performance.



#3 Short Patch Cables


Do not use long patch cables when they aren’t required. They are inefficient, look disorganized, and are prone to tangling.



#4 Select Quality Terminations


Avoid purchasing cheap terminating cables because time will be unnecessarily spent on troubleshooting in the future. Select those that are of high quality and terminate properly and rapidly.



#5 Avoid Overheating


Keep in mind that maintaining proper cable temperatures to avoid overheating is crucial for stable and reliable network performance.



#6 Measure 2X, Cut 1X


Precise measurements prior to cutting will minimize damaged and wasted cables during installations.



#7 No Kinky Fiber Cables


As fiber cables have great flexibility, they can kink bend, and knot. These will result in flaws in the fiber cables, negatively affecting performance of the network.



#8 Maximum Cable Length


Do not exceed the maximum length of a cable run, which is typically 100 meters for network cabling systems.



#9 Allow for Expansion


Network cabling systems should always have room for interior expansion. As a business grows, its network should have the room to be able to upgrade or expand.



#10 Qualified Installation Company


In order to ensure that a company’s network cabling system will be properly installed, management must select a qualified installation company and request references.  Their technicians should be BICSI certified and experts in ANSI standards.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of our clients in the Washington, D.C. and New York City areas. Efficiently working together, Progressive teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call our toll free number (800) 614-4560 today.

Structured Cabling,Washington DC New York City

The 5 Most Common Structured Cabling Errors – Part 2

28 Oct 2017

Structured Cabling,Washington DC New York CityAs mentioned in Part 1, structured cabling systems are so standardized that good practices should merely entail following ISO/IEC, CENELEC or Telecommunications Industry Association (TIA) documentation. Part 2 will discuss three more common errors of structured cabling.



Error No. 3


Failing to properly test a structured cabling system after installation is the third error. Structured cabling represents a large commitment of capital expenditure and will typically have the same length of service life as the facility itself. Ensuring that the entire system is installed to specification and the data is at the capacity and speed expected is crucial. Finally, properly testing the cabling system is required to validate the warranty.


Cables installed during the early period of construction may have been subsequently damaged by other workers performing their roles later during the project. Moreover, new cables that appear fine on the exterior may actually be faulty because of damage underneath the coating as a result of being mishandled. All cables require calibrated testing.



Error No. 4


Using unqualified technicians for installation is the fourth error. Scrimping on the quality of workers installing cabling is an unwise way to save money. Problems will eventually be revealed over time. Prior to committing to a service contract with a structured cabling service, review their credentials and confirm their references. Have conversations with previous customers whose project is similar in scope to yours. Working with a reputable structured cabling firm will help make sure your project will be successful for the long term.



Error No. 5


Letting structured cabling patch panels become disorganized is the fifth error. It will harm both the performance and reliability of a company’s IT systems. As time passes, the patch panel or switch ports may be damaged, causing intermittent problems that are very hard to pinpoint. The use of proper cable management hardware for supporting patch cables is good practice. Complying with the specified patching standards required for a particular structured cabling system will result in a sound and reliable network.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of our clients in the Washington, D.C. and New York City areas. Efficiently working together, Progressive teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call our toll free number (800) 614-4560 today.

Structured Cabling, Cabling, Washington DC

The 5 Most Common Structured Cabling Errors – Part 1

19 Oct 2017

Structured Cabling, cablesStructured cabling systems are so standardized that good practices should merely entail following ISO/IEC, CENELEC or Telecommunications Industry Association (TIA) documentation for panel and outlet standards, cable pathway standards, maximum cable and patch cord lengths, patch testing standards, etc. Strictly doing so will invariably result in an installation that is professional and trouble free. In addition, as data speeds grow faster and faster, following industry standards becomes even more crucial.


Improperly installed cabling made up of shorter runs, which do not overly stress the system, may function well enough. In addition, data speeds may be quite beneath the cable specification capacity. As an example, CAT5e carrying 100Mbps and capable of 1Gbps will have ample margin of error. However, structured cabling systems still need qualified technicians for proper installation supporting maximum data speeds over the entire network as required.


The following will discuss the five most common errors of structured cabling. Remember to call an experienced and expert cabling installation team to get the best results for your company’s project.



Error No. 1


Considering cables as merely wiring is the first error. They are actually very important electronic components that provide the pathway for data from point to point within a network. These points may be a desktop PC, a network switch, server, router, and wireless access point. When you consider that cables make these connections possible, then you can understand how important it is to make sure that the cabling is of high quality and properly installed.



Error No. 2


Running data cables near power cables is the second error. Even when cables are screened, this practice is unsound. When data cables are running near and parallel to   power cables, noise emitted by power cables may infiltrate data cables. As the load carried by power cables fluctuate, resulting spikes or surges may radiate into the data cables, creating undesired noise decreasing the quality of the data transmission.


Part 2 will discuss three more common errors of structured cabling.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of our clients in the Washington, D.C. and New York City areas. Efficiently working together, Progressive teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call our toll free number (800) 614-4560 today.

structured cable management

Structured Cabling’s Six Subsystems – Part 2

28 Aug 2017

structured cable management,DCAs mentioned in Part 1, a structured cabling system is a type of open network structure that can be used by data, telephony, access control, building automation, and other systems. Its advantages are operational flexibility and economy. Part 2 will describe each of structured cabling's six subsystems below.



The Six Subsystems


1. Entrance Facilities


Entrance facilities house the protection devices, network demarcation points, cables,  connecting hardware, and other equipment that connect to private network cabling or the access provider. Connections between the inside building and outside plant cabling are included.



2. Equipment Room


Featuring environment control, the centralized area for telecommunications equipment is typically more complex than a telecommunications room. Usually containing the main cross-connect, it may also house the horizontal and intermediate cross-connects.



3. Backbone Cabling


Backbone cabling provides the interconnections between entrance facilities, telecommunications rooms, equipment rooms, etc. Typically, backbone cabling is comprised of fiber optic cables, intermediate and main cross-connects, mechanical terminations, and patch cables utilized for backbone-to-backbone cross-connections.



4. Telecommunications Room


Housing the terminations of backbone and horizontal cables to connecting hardware with patch cords or jumpers, a telecommunications room may also house the intermediate cross connects or main cross connect for different portions of the backbone cabling system. This space is a controlled environment containing telecommunications equipment, connecting hardware, and splice closures.



5. Horizontal Cabling


Extending from the work area’s telecommunications information outlet to the telecommunications room, the horizontal Network Cabling consists of horizontal cables and mechanical terminations, along with the jumpers and patch cords located in the telecommunications room. The system may also incorporate consolidation points and multi-user telecommunications outlet assemblies.



6. Work Area


The work area’s components typically extend from the telecommunications outlet/connector end of the horizontal cabling system to the work area equipment. At least two telecommunications outlets should be installed in every work area. If utilized, multi-user telecommunications outlet assemblies (MUTOAs) are a component of the work area.



Progressive Office Cabling


Founded in 1986, Progressive Office’s success has been a direct result of years of commitment to seeking solutions on behalf of their clients in the Washington, D.C. and New York City areas. Working together, their cabling teams get cabling installed and operating as fast as possible while minimizing disruption and downtime. Call their toll free number (800) 614-4560 today.

Structured Cabling, Cabling, Washington DC

Data Center Cabling Best Practices – Part 1

4 May 2017

Structured Cabling, Washington DC, New York CityModern data centers are equipped with devices and networking equipment that connect them. These devices demand increasingly greater bandwidth, and so their fiber or copper cabling must perform at a high level. Today’s data centers must be flexible, scalable, reliable, and manageable, making best practices required.



Planning the Infrastructure


Thus, documenting the existing and planned network, along with its equipment is needed. A flexible patching structure will permit the interconnection of devices at desired locations.



Structured Cabling


The structured approach of cabling revolves around the design of runs and connections that ease cable identification, maintenance, repair, and future expansion or reconfiguration. A Main Distribution Area (MDA) and Horizontal Distribution Area(s) (HDAs), along with two-post racks that permit improved access and cable management, will be needed.


MDA and HDA components must be of high quality and capable of bearing expected future loads. Their layout should have horizontal and vertical cable managers. The MDA contains primary cross-connects and core networking equipment. The HDA contains the cross-connects for the distribution of cables to Equipment Distribution Areas (EDAs). Patch cables will connect servers and storage by utilizing patch panels at their respective EDA.


Next, the equipment racks inside the data center must have their layout determined. A horizontal cabling configuration will be used for the distribution of cables from the HDA to the EDA. Flexible connectivity is required by a dynamic data center environment. The goal is the implementation of a system that transmits fiber channel, Ethernet, and other protocols.


Future port and application requirements will also need to be considered. Expansion and technological advances must be anticipated, so the installation of ports and cabling needed in the future should be done now to save on labor costs and downtime if upgrades are needed.



Structured Infrastructure Benefits



  • Cable identification and fault isolation simplified

  • Consistent cabling lays sound foundation for future

  • Future expansions and modifications made easier

  • Standard-compliant components from multiple vendors possible

  • Flexible connections provided


Cabling for Modular Data and High Density/High Port Count Fiber Equipment will be discussed in Part 2.



Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Data Cabling ,Network cabling, DC

Essential Components for Wired Networks

10 Apr 2015

Data Cabling ,Network cabling, DCBe sure to purchase the correct components before you install a wired network. The major components consist of the cable, router and network adapters.



Cables


You should opt for fast Ethernet or the 100 Base T cable. Ethernet (RJ-45) looks like telephone cables with somewhat thicker wire and jacks. It is also known as Cat 5e or Twisted Pair Ethernet with corresponding speed ratings of 10, 100, and 1,000. Every PC requires a separate network adapter.

Read More

Cat5e ,Cat6/6a Cabling,patch cables

Patch Cables and Twisted Pair Cabling

21 Mar 2015

The patch cable is used to link up two network devices. This type of cabling is usually a Cat6 or a Cat5e cable thaCat5e ,Cat6/6a Cabling,patch cablest connects personal computers to the wall plate or provides the short interconnects among the switches, routers and the patch panels in the wall closet or Server Room. These make use of stranded wires instead of solid to increase flexibility. It also lessens the risk of cracking when you unplug the cable. There is also a variety of Ethernet patch called the crossover cable. It is used to hook up two PCs together and sometimes to interconnect switches.



Ethernet Systems


Ethernet systems ensure adaptable and economical methods of conveying voice, data, and multimedia over integrated networks. In fact, Ethernet patch cords have become very common. These wall to wall cables gave rise to the growth of generic and structured cabling systems. Today, these are used practically for all networking components regardless of industry or application. However, there are concerns that you need to consider. Whereas modular attributes and profusion of patch cables denote absolute universal use, there are differences that can reduce interchangeability. Some of the disparities originate from various wiring configurations of cable conductors and connector pins.



Twister Pair Cables


For this type of cabling, two conductors are coiled to prevent electromagnetic interference (commonly known as EMI) that comes from external (usually electrical) sources. One example is the electromagnetic radiation caused by uncovered twisted pair cables or UTP as well as cross talk produced by adjacent electrical wires. The process of shielding generates a conductive barrier to lessen these electromagnetic waves. It also creates a conduit for conduction so that  currents and data can traverse freely. Shielding can be applied on individual pairs or as a group of pairs.


Twisted conductor pairs form a secure circuit. The voltages carry the same magnitude or amplitude. However, one is positive while the other is negative. Incidentally, crosstalk takes place if the electromagnetic field turns out a signal that is too big or strong and intereferes with a nearby pair. The sound is like a fusion of the two fields by means of a swap of the energy between them. Certain components of these signals are passed on to each other during this exchange of energy.


As a result, here is an ensuing increase in the level of “noise”. External sources of EMI and RFI create signal interference in a similar manner. These cause distortion of the signals that go to your office and communications equipment.


Overall, these are the things that you should take into account with regards to twisted and patch cabling.


Please feel free to contact us if you need help with your office cabling project!

Structured Cabling, Cabling, Washington DC

Practical Pointers in Network Cabling

20 Feb 2015

StructuredCablingFiberOpticsCat6a10GigNetworking cabling is not a simple task. It entails expertise and attention to detail. What are valuable insights that network technicians need to know about for effective cabling and installations?



Cable length is essential.


The telecommunications standards prescribed by the Telecommunications Industry Association and Electronic industries Alliance (TIA-EIA) states that maximum distance end to end of cables should be no more than 100 meters.

Read More