Structured Cabling, Cabling, Washington DC

Data Center Cabling Best Practices – Part 1

4 May 2017

Structured Cabling, Washington DC, New York CityModern data centers are equipped with devices and networking equipment that connect them. These devices demand increasingly greater bandwidth, and so their fiber or copper cabling must perform at a high level. Today’s data centers must be flexible, scalable, reliable, and manageable, making best practices required.



Planning the Infrastructure


Thus, documenting the existing and planned network, along with its equipment is needed. A flexible patching structure will permit the interconnection of devices at desired locations.



Structured Cabling


The structured approach of cabling revolves around the design of runs and connections that ease cable identification, maintenance, repair, and future expansion or reconfiguration. A Main Distribution Area (MDA) and Horizontal Distribution Area(s) (HDAs), along with two-post racks that permit improved access and cable management, will be needed.


MDA and HDA components must be of high quality and capable of bearing expected future loads. Their layout should have horizontal and vertical cable managers. The MDA contains primary cross-connects and core networking equipment. The HDA contains the cross-connects for the distribution of cables to Equipment Distribution Areas (EDAs). Patch cables will connect servers and storage by utilizing patch panels at their respective EDA.


Next, the equipment racks inside the data center must have their layout determined. A horizontal cabling configuration will be used for the distribution of cables from the HDA to the EDA. Flexible connectivity is required by a dynamic data center environment. The goal is the implementation of a system that transmits fiber channel, Ethernet, and other protocols.


Future port and application requirements will also need to be considered. Expansion and technological advances must be anticipated, so the installation of ports and cabling needed in the future should be done now to save on labor costs and downtime if upgrades are needed.



Structured Infrastructure Benefits



  • Cable identification and fault isolation simplified

  • Consistent cabling lays sound foundation for future

  • Future expansions and modifications made easier

  • Standard-compliant components from multiple vendors possible

  • Flexible connections provided


Cabling for Modular Data and High Density/High Port Count Fiber Equipment will be discussed in Part 2.



Union Network Cabling


When union work requires a unionized cabling group, call on Progressive Office Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Data Cabling,Structured Cabling, Cabling Design-Washington DC

Structured Cabling Benefits for Your Business

28 Apr 2017

 Structured cabling, cable, Washington DCThe structuring of cabling will result in better organization and easier management of the cables. If you are a building manager or business owner, you may already know a bit about structured cabling. You may be currently thinking about its installation in your premises. In the most basic terms, structured cabling allows for several devices like computers and telephones to be connected via a cabling system infrastructure. The following discusses several benefits of structured cabling for a facility or office. Consult with experienced structured cabling professionals to get the best results.



Adaptability


Structured cabling is technology that allows business managers to plan and prepare for the future, making its implementation a valuable investment. Structured cabling that installs a newer cable such as Cat 6 will provide adequate bandwidth, making it viable for an extended period as a business’ IT needs gradually expand. The high bandwidth of a structured cabling system will also give a business the increased ability to adapt newer applications, devices, and technologies.



Diagnosis and Repairs Made Easier


Whenever issues occur on multiple, disorganized cabling systems, determining the source of the problems will be difficult. Although structured cabling is a unified system, it is organized in segments, making it much easier for technicians to locate malfunctions and repair them.



Flexibility at Lower Costs


The people, equipment, and offices of an organization are not static. Businesses evolve and restructure as time passes. Employees of a department may have to move to another area. The entire area of an office may also need renovation. Typically, changes like these grind business to a halt, hurting the bottom line. However, a structured cabling system allows a company’s staff to move to another part of an office, connect, resume working, and remain productive without missing a beat.



Networking


Employees will also be able to connect their devices into any outlet of a structured cabling system as opposed to a particular wire, promoting flexibility and productivity. In addition, a structured cable system will be able to convey data in multiple forms, allowing staff on a network to connect with other computers, servers, printers, and telephones.



Simplified Management


One of the greatest advantages of a structured cabling system is the elimination of disorganized and unsightly wires. The replacement of a configuration using multiple cabling with a structured cabling system will result in easier and less costly management by technicians as they will save time on repairs and restructurings.



Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Network Cabling, Network , Structured cabling, cable, Washington DC

Network Upgrade Planning for Companies – Part 2

24 Apr 2017

 Network , Structured cabling, cable, Washington DCAs mentioned in Part 1, a good network upgrade plan will make an analysis determining each aspect of SWOT: Strengths, Weaknesses, Opportunities, and Threats, helping project managers create a clear plan consisting of five phases. Part 1 discussed the first two, Gathering of Requirements and Selection & Design. Part 2 will cover the last three, Implementation, Operation, and Review & Evaluation.



3) Implementation


Proper execution of the first two phases, will allow Implementation to be performed without major issues. However, every neglected task in the first two phases will certainly have to be addressed during Implementation. A sound schedule will provide time for unanticipated problems which will minimize disruptions of the customer’s business. Maintaining communication between project designers and the client throughout installation is crucial for making a project successful.



4) Operation


After the completion of the network implementation phase, the network transitions into a production environment. The network is live and executes the tasks it’s been programmed to perform. The proper completion of all tasks before this phase will minimize unexpected incidents during the network’s operation phase.



5) Review & Evaluation


Once operational, the network’s design and implementation must be studied and assessed in terms of the design’s objectives. Typically, these tasks are performed by design team staff with the help of network members. There will be an evaluation of costs, performance, and environmental fit.



The items below are recommended for this process:



  • Make a comparison between user experience and the documented goals, then make an assessment of the design’s performance.

  • Make a comparison between planned designs and costs and actual results of deployment, ensuring future projects will learn from these lessons.

  • Observe the operation and document all revisions, making sure the system is accountable.


Each phase should practice sound planning and conduct reviews for optimal functioning and successful installation. For ideal results, on-site technicians should participate in all phases of a network upgrade. They will have a better grasp of the project’s goals, and they will able to provide users better service.

Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Network, Data cabling, IT Support

Network Upgrade Planning for Companies – Part 1

12 Apr 2017

Network, Data cabling, IT SupportPlanning the network upgrade for a company requires careful consideration. Similar to other projects, a need is determined, and then the upgrade process is planned from its start to conclusion. Every sound network upgrade plan will make an analysis determining each aspect of SWOT: Strengths, Weaknesses, Opportunities, and Threats. This SWOT analysis will help project managers create a clear plan that defines the tasks required and the order of the workflow.



Overview


A network constructed as a hodgepodge of devices attached using a combination of protocols and technologies is a sign of substandard initial planning. This lack of forethought results in networks that are prone to downtime, challenging maintenance, and difficult troubleshooting. This poor kind of network is commonly found at small businesses that undergo rapid and unanticipated growth. Big companies also experience this when their networks suddenly expand after a merger with or acquisition of another company. In cases where growth is expected, a company will have a better opportunity to properly plan a network upgrade that is less problematic and provide users adequate service.



Five Phases


Network upgrade planning starts after completion of the initial site survey and report. The plan will be typically divided into five phases as listed below, and each will be then discussed individually.




  • Gathering of Requirements

  • Selection & Design

  • Implementation

  • Operation

  • Review & Evaluation


1) Gathering of Requirements


Once adequate data has been gathered from visits to the customer and site, the ISP design team will make an evaluation that will determine network requirements and write an analysis report.



2) Selection & Design


After the completion of the analysis report, equipment consisting of devices and cabling will be selected. Several designs will be drafted by the design team, and these will be submitted to other project members for feedback.


This process with allow participants to consider the LAN from a point of view of documentation and assess trade-offs in terms of cost and performance. In addition, design weaknesses will be discovered and solutions will be considered. Moreover, this phase will allow prototyping to determine optimum methodology. Prototypes let designers see how the network will operate before final implementation.


Part 2 will cover the next three phases, Implementation, Operation, and Review & Evaluation.



Union Network Cabling


When union work requires a unionized cabling group, call on Progressive Office Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

cable,Data Cabling ,Cat5e, Cat6/6a Cabling

Category 5e Cabling Becoming Obsolete

4 Apr 2017

cable,Data Cabling ,Cat5e, Cat6/6a CablingIt is inevitable that applications requiring speeds greater than 100 Mbps and 1000 Mbps will increase. The growing use of wireless devices, high resolution images, HD video streaming, surveillance, and multimedia are straining the capacity of Category 5e infrastructure, and there will come a point when it will be unable to cope.


Although it is capable of handling 1000 Mbps speeds at 100 MHz, the upgrading of Category 5e cabling will be necessary in the near future in order to support new applications and emerging technologies that will be deployed by businesses that are bandwidth intensive.



Category 5e Inadequate in Near Future


Cabling will be migrating from being behind walls to above ceilings, where it can end at a wireless access point (WAP). Much more cabling will be needed to serve an increasing utilization of WAPs for numerous users.


The advent and growth of new Wave 2 WiFi devices, which transmit at data at ranges of 1 Gbps up to perhaps 7 Gbps, will require faster Ethernet links for the connection of these WAPs. Installing Category 6A cabling may be the only effective solution for companies. The need for average speeds greater than 1G is increasing, perhaps to 10G. Category 5e is incapable of carrying speeds of 10 Gbps speeds over a required distance of 100 meters.


An emerging technology using balanced twisted-pair cabling, HDBaseT is used to transmit uncompressed HD video, audio, Ethernet, control, and power over 100 meters. Category 5e will be unable to support it, while Category 6A cabling is capable.


4-cable pair PoE, the next power over Ethernet standard, provides power more efficiently. However, the gauge of cable must grow in order for the reduction of resistance and permit higher power delivery. Consequently, 4-pair PoE has superior performance on Category 6A 23 AWG than Category 5e 24 AWG.



Cabling Standards Recommend Category 6A


For certain organizations, such as educational institutions, commercial buildings, data centers, and healthcare facilities, new installations require or recommend at least Category 6 cabling. Even though Category 6A may require greater capital expenditure than Category 5e cabling, costs will be decreased in the long term. A company’s network will be future proofed and will be capable of supporting new applications and emerging technologies.



Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Cable Management,Cable Management ,Data Cabling ,Cat5e, Cat6/6a Cabling

Overview of Cable Management Practices – Part 2

28 Mar 2017
Cable Management ,Data Cabling ,Cat5e, Cat6/6a Cabling

As mentioned in Part 1, the wired industry continues to grow despite the trend towards wireless communications during the past decade because of security concerns. Concrete trenching and floor decking were discussed as two of the four main practices of cable management. Part 2 will discuss Overhead Cabling/Cable Drops and Underfloor Cable Management. Consult with experienced professionals to make your cabling project a long-term success.



OVERHEAD CABLING/CABLE DROPS


Deployed within single-story and multi-story buildings, overhead cabling provides flexibility. This method uses overhead space, which can either be a dropped ceiling or an exposed ceiling. Cables and conduit are suspended from the ceiling, and cable drops, which are concealed by chaseways or poles, descend to serve work areas.



Advantages


This method does not require any cutting or trenching of concrete cutting. Unoccupied areas are used to install conduit and cabling.



Disadvantages


It will be a challenge to reroute cabling as technicians will need to use a ladder all along a line. Cable drops are generally considered an eyesore, and so this practice is highly discouraged for facilities that emphasize customer experience, such as retail. It may not be appropriate in the work areas of certain professions such as law offices.



UNDERFLOOR CABLE MANAGEMENT


Utilizing access flooring for the routing and concealment of cables, underfloor cable management may be the most advantageous. Cables can be routed beneath the flooring or within the floor itself in low-profile access flooring.



Advantages


Underfloor cable management does not require concrete cutting or trenching. It is not necessary to work inside ceiling space. There is flexibility in routing, and cable rerouting is easy. Low profile floors are only one to three inches in height. There is almost an unlimited number of possibilities for layout designs. It can be rapidly installed during construction, and business disruption is minimized whenever additions and changes need to be made.



Disadvantages


The method takes up space of one to three inches in height. There will be an extra step in the installation process.



Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. Specializing in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

CAT 6a,network cabling, DC

Gradual Phase Out of CAT5e Cabling in Office Buildings

13 Mar 2017

Class E (CAT6), Network Cabling, DCAfter their Milan working group meeting in 2015 regarding cabling standards, the International Organisation for Standardisation (ISO) and International Electrotechnical Commission (IEC), together known as the ISO/IEC, made the announcement that Category 5e (CAT5e) cabling will be considered obsolete for new installations in commercial and industrial buildings.


Setting the first international standard for cabling more than 20 years ago, ISO/IEC continually works on the development, maintenance, and promotion of technology and communications technical standards. A major change for the cabling of office buildings is now being implemented worldwide, raising the minimum horizontal cabling requirement from Class D (CAT5e) to Class E (CAT6), along with recommendations for installing Class EA (CAT6a) or faster cabling. Essentially, this will result in making CAT6 the minimum requirement for installations in new office building installations.


Providing a maximum performance of 100 MHz over computer networks, CAT5e has been utilized in structured cabling for both Ethernet and IP communications.  Considered adequate for fast Ethernet and gigabit Ethernet, CAT5e has the additional capability of carry video and telephony signals. The original ISO/IEC 11801 standard now has cabling classes that were added for enabling the support of up to 10 gigabits a second, such as CAT6, CAT6A, CAT7 and CAT7A.


CAT5 is not capable of matching the speed of data that CAT6 or CAT7 cabling can deliver. CAT6 has a maximum performance of 250 MHz, while CAT7 has a maximum performance of 600 MHz, enabling ultra-fast Ethernet. In addition, CAT7 features better durability and a longer service life than either CAT5 or CAT6 cabling.


More than 20 years have passed since ISO/IEC 11801 made its debut as an international standard, and it has led the way for the reliable implementation of data and voice cabling globally. However, CAT5e is now in the process of being phased out. Superior classes of cabling are being installed at new office buildings. Wireless LAN infrastructure is upgrading at a rapid pace, along with its speed, to keep up with the growing number of smartphones, laptops, and tablets. These demands have forced the gradual replacement of CAT5e with newer cabling that will meet current and future user expectations for fast and efficient data capability.



Union Network Cabling


When union work requires a unionized cabling group, contact Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. They specialize and excel in cabling for data, voice, security, and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290

Network Cabling,data cabling,,DC

Comparing Cat 7 to the Other Cats

3 Mar 2017

Data cabling, network cablingNowadays offices and homes utilize either a wireless (Wi-Fi) connection or wired network connection. Usually faster than Wi-Fi, wired connections also have lower latency. These two types of network connection continue to progress technologically, providing users ever increasing speeds.


In the case of home networks, the speed of the internet connection is typically the issue, and the cabling may not be a factor. However, a company must consider the specifications of particular cables and how these would meet its requirements in order to properly decide which to select. There can be a vast difference between the network speeds of the various Ethernet cables.



Types


Cables are differentiated by standard categories. Category has been abbreviated to “Cat” by the industry. Currently, the most common cables in use are Cat 5, Cat 5e, Cat 6, and Cat 6a. The newest type is Cat 7. Every type is backward compatible, allowing users to insert a newer cable into a device that was manufactured for an older cable without any compatibility issues arising.

Progress


With every new cable category, users were provided increased speed and decreased crosstalk. Newer category cables provided faster speeds at increased lengths of cable. The following offers comparisons at 100 meters of cable, illustrating the differences between the ethernet cable categories:

Cat 5 - Considered slow and inadequate for business networks, providing up to 100 Mb/second at 100 Mhz.

Cat 5e - provides up to 1 Gb/second internet speed at 100 Mhz.

Cat 6 -provides up to 1 Gb/second, and cable lengths up to 55 meters can give internet speeds of 10 Gb/second at 250

Cat 6a -can provides speeds up to 10 Gb/second, to 100 meters of cable length, at 500 Mhz.

Cat 7 - provides speeds up to 10 Gb/second to 100 meters of cable, at 600 Mhz.

History


Cat 5 was the standard in 1995, Cat 5e became standard in 2001, and Cat 6 was introduced in 2002. Arriving in 2008, Cat 6a is typically the newest cable the majority of companies have used because it is not considered necessary to update to Cat 7 yet. Cat 7a and Cat 8, which were respectively released in 2010 and 2013, are still waiting in the wings.

Union Network Cabling


When union work requires a unionized cabling group, call on Union Network Cabling for your commercial Cat5e/6/6a and fiber cabling projects. We specialize in cabling for data, voice, security and even the latest WiFi and LiFi solutions. Phone: (202) 462-4290
Structured Cabling, Washington DC, New York City

Resolving Vital Issues in Network Cabling

5 Jun 2015

 Structured Cabling ,Washington DC New York CityThe quality of information flow is no better than the medium that carries it. This is the cabling network. The structured cabling platform will ensure that information flows efficiently through the cabling system. It consists of transmission tools applied according to standard engineering designs that enable users to transmit voice and data signals.


The controlled cabling system is the foundation and essential investment that provides a common, mutual platform for multiple information technology systems. However, there can be problems and information flow can be obstructed because of an information technology structure that has been designed improperly. Therefore, it is necessary to tackle crucial concerns in structured cabling during the planning stage.

Read More